Platelet-activating factor increases mucosal permeability in rat intestine via tyrosine phosphorylation of E-cadherin.
نویسندگان
چکیده
1. Platelet-activating factor (PAF), an inflammatory mediator, plays an important role in mediating intestinal injury. However, it remains unclear whether PAF has a function in the intestine. The production of PAF by normal intestine and by unstimulated intestinal epithelial cell lines suggests that PAF may have a regulatory function in the normal bowel. 2. In this study we investigated the role of PAF in modulating intestinal mucosal permeability in rats. Lumen-to-blood transit of FD-4 (dextran 4400), (an index of intestinal permeability), was assessed in sham-operated rats and rats injected with PAF (1.25 microg kg(-1), i.v., a dose insufficient to induce intestinal injury). 3. PAF-induced villus cytoskeletal changes were examined by staining the intestine for F-actin. The effect of PAF on tyrosine phosphorylation of the junctional protein E-cadherin was examined by immunoprecipitation. Some rats were pretreated with AG1288 (a tyrosine kinase inhibitor) before PAF injection, and mucosal permeability change was assessed. 4. To investigate the role of endogenous PAF upon mucosal permeability, we studied the effect of PAF antagonists on (intraluminal) glucose-induced increase in mucosal permeability. 5. We found that low dose PAF: (a) alters the cytoskeletal structure of intestinal epithelium, (b) causes the influx of FD4 from intestinal lumen to systemic circulation, (c) induces tyrosine phosphorylation of E-cadherin and cadherin-associated proteins. Glucose-induced mucosal permeability increase is abolished by using two structurally different PAF antagonists. 6. These results suggest that endogenous PAF modulates macromolecular movement across the intestinal mucosal barrier, probably via tyrosine phosphorylation of E-cadherin and cytoskeletal alteration of enterocytes.
منابع مشابه
Platelet-activating factor increases VE-cadherin tyrosine phosphorylation in mouse endothelial cells and its association with the PtdIns3'-kinase.
Platelet-activating factor (PAF), a potent inflammatory mediator, is involved in endothelial permeability. This study was designed to characterize PAF receptor (PAF-R) expression and its specific contribution to the modifications of adherens junctions in mouse endothelial cells. We demonstrated that PAF-R was expressed in mouse endothelial cells and was functionally active in stimulating p42/p4...
متن کاملS-nitrosylation regulates VE-cadherin phosphorylation and internalization in microvascular permeability.
The adherens junction complex, composed mainly of vascular endothelial (VE)-cadherin, β-catenin, p120, and γ-catenin, is the main element of the endothelial barrier in postcapillary venules.S-nitrosylation of β-catenin and p120 is an important step in proinflammatory agents-induced hyperpermeability. We investigated in vitro and in vivo whether or not VE-cadherin isS-nitrosylated using platelet...
متن کاملPlacenta Growth Factor-1 Exerts Time-Dependent Stabilization of Adherens Junctions Following VEGF-Induced Vascular Permeability
Increased vascular permeability is an early event characteristic of tissue ischemia and angiogenesis. Although VEGF family members are potent promoters of endothelial permeability the role of placental growth factor (PlGF) is hotly debated. Here we investigated PlGF isoforms 1 and 2 and present in vitro and in vivo evidence that PlGF-1, but not PlGF-2, can inhibit VEGF-induced permeability but ...
متن کاملDiperoxovanadate alters endothelial cell focal contacts and barrier function: role of tyrosine phosphorylation.
Diperoxovanadate (DPV), a potent tyrosine kinase activator and protein tyrosine phosphatase inhibitor, was utilized to explore bovine pulmonary artery endothelial cell barrier regulation. DPV produced dose-dependent decreases in transendothelial electrical resistance (TER) and increases in permeability to albumin, which were preceded by brief increases in TER (peak TER effect at 10-15 min). The...
متن کاملFibroblast Growth Factor Signaling Potentiates VE-Cadherin Stability at Adherens Junctions by Regulating SHP2
BACKGROUND The fibroblast growth factor (FGF) system plays a critical role in the maintenance of vascular integrity via enhancing the stability of VE-cadherin at adherens junctions. However, the precise molecular mechanism is not well understood. In the present study, we aimed to investigate the detailed mechanism of FGF regulation of VE-cadherin function that leads to endothelial junction stab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- British journal of pharmacology
دوره 129 7 شماره
صفحات -
تاریخ انتشار 2000